Mixed numbers
A mixed number is a way to write a fractional number that is greater than 1. Mixed numbers have two parts: an integer and a fraction smaller than 1. If the integer is a and the fraction is b/c then the mixed number can be written as a fraction following this procedure:
![a\text{ }(b)/(c)=a+(b)/(c)=(ac+b)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/xdcwypjwii7z8hhm1dj4vwzj5i9oyyc094.png)
Simplifying
We must simplify this expression:
![6\text{ }(3)/(5)-2\text{ }(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/2vd7livpk82yqhv1iayhm712h9inejdnmw.png)
We can write both numbers as fractions using the formula above:
![\begin{gathered} 6\text{ }(3)/(5)-2\text{ }(1)/(4)=(6+(3)/(5))-(2+(1)/(4))=(6\cdot5+3)/(5)-(2\cdot4+1)/(4) \\ 6\text{ }(3)/(5)-2\text{ }(1)/(4)=(6\cdot5+3)/(5)-(2\cdot4+1)/(4)=(33)/(5)-(9)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/olfazai1gcwqc9qy5tv00s1lw8zmgc2mam.png)
In order to perform the last substraction we can multiply and divide each fraction by the denominator of the other:
![(33)/(5)\cdot(4)/(4)-(9)/(4)\cdot(5)/(5)=(132)/(20)-(45)/(20)=(132-45)/(20)=(87)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/pag5j1sy56fq93ic9k4r8gwjxsututhygh.png)
Now we have to write 87/20 as a mixed number. We can rewrite the numerator like this:
![(87)/(20)=(7+80)/(20)=(7+4\cdot20)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/ntbhtshvbkos8mpthqk8u6zn63aiqg3upw.png)
Then we distribute the division:
![(7+4\cdot20)/(20)=(7)/(20)+(4\cdot20)/(20)=(7)/(20)+4=4\text{ }(7)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/nfwcyji7ced9oo8epxj4ta0c8vezcaiokj.png)
Then the answer is 4 7/20.