To answer this question we will use the following two points formula to compute the equation of a line that passes through two given points:
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1).](https://img.qammunity.org/2023/formulas/mathematics/college/173ncqk8d261fdp7khmyauyxyn5plaktev.png)
From the given table we get that the graph of the given linear function passes through (1,-5) and (2,-8) then its equation is:
![y-(-5)=(-8-(-5))/(2-1)(x-1).](https://img.qammunity.org/2023/formulas/mathematics/college/8v48js7sbved11pjwi5lm72z6nrd2kukcf.png)
Simplifying the above result we get:
![\begin{gathered} y+5=(-8+5)/(1)(x-1), \\ y+5=-3(x-1), \\ y+5=-3x+3. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tmwusqvzx4hf0pja9gxkeiqfvf2a2mr7ng.png)
Subtracting 5 from the above result we get:
![\begin{gathered} y+5-5=-3x+3-5. \\ y=-3x-2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gyre0vbjw1zdjhgga36d8917zbxdkd8u07.png)
Answer:
![y=-3x-2.](https://img.qammunity.org/2023/formulas/mathematics/college/bax4szutsqdtdq5pilnm7hilvli8xos2by.png)