We have
mr=mass rifle
mb=mass bullet
vb0=initial velocity of the bullet
vr0=initial velocity of the rifle
vbf=final velocity of the bullet
vrf=final velocity of the rifle
mr=2.68 kg
mb=69.5 g =0.0695 kg
vb0=0 m/s
vr0=0m/s
vbf=612 m/s
vrf=?
![m_bv_(bo)+m_rv_(ro)=m_bv_(bf)+m_rv_(rf)](https://img.qammunity.org/2023/formulas/physics/college/zfoyfalkx66oj5pfq48kzw1r1cgmyucbur.png)
![0=m_bv_(bf)+m_rv_(rf)](https://img.qammunity.org/2023/formulas/physics/college/1warmatvvvh3em1gd94kz2r07k9skh9zfa.png)
we isolate the vr
![v_(rf)=(-m_bv_(bf))/(m_r)](https://img.qammunity.org/2023/formulas/physics/college/tv39q6c8nwuj2yyu223t9gczr18dpk15b9.png)
Then we substitute
![v_(rf)=\frac{-(0.0695\operatorname{kg})(612)}{2.68}=-15.871\text{ m/s}]()
The recoil velocity is -15.871 m/s