Given the equation:
![S(t)=20(7-(7)/(2+t))](https://img.qammunity.org/2023/formulas/mathematics/college/4q5qohjsnf9ff1c7urymdflcyxticcrnyb.png)
Where t is the time in months.
Let's solve for the following:
• (a). Average rate of change of S(t) during the first year.
During the first year, the time interval, t is from 0 to 12 months.
Now, to find the average rate of change for the first year, apply the formula:
![S(t)_(avg)=(S(12)-S(0))/(12-0)](https://img.qammunity.org/2023/formulas/mathematics/college/btx6q42zi474n4gpazxdfxmpgwgp48j9zj.png)
Now, let's solve for S(12) and S(0):
![\begin{gathered} S(12)=20(7-(7)/(2+12))\Longrightarrow20(7-(7)/(14))\Longrightarrow20(7-0.5)=130 \\ \\ S(0)=20(7-(7)/(2+0))=\Rightarrow20(7-(7)/(2))\Longrightarrow20(7-3.5)=70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7b4dl45reost4f3g5z88ji81vmrg58pw17.png)
Hence, to find the average rate of change, we have:
![\begin{gathered} S(t)_{\text{avg}}=(S(12)-S(0))/(12-0) \\ \\ S(t)_{\text{avg}}=(130-70)/(12-0) \\ \\ S(t)_{\text{avg}}=(60)/(12) \\ \\ S(t)_{\text{avg}}=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5h9b9lcj5s3nfylmf552ond1va7219hbdo.png)
Therefore, the average rate of change during the first year is 5
• (b). During what month of the first year does S (1) equal the average rate of change?
Let's first find the derivative of S(t):
![\begin{gathered} S^(\prime)(t)=20(0+(7)/((2+t)^2)) \\ \\ S^(\prime)(t)=20((7)/((2+t)^2)) \\ \\ S^(\prime)(t)=(140)/((2+t)^2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pkr85fzs46lmhl833bews68b3dey7c153f.png)
Now, we have:
![\begin{gathered} S^(\prime)(t)=S_(avg) \\ \\ 5=(140)/((2+t)^2) \\ \\ 5(2+t)^2=140 \\ \\ (2+t)^2=(140)/(5) \\ \\ (2+t)^2=28 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6pwn2qmxup98hc32ahwsqgs2dmzs3pa0fs.png)
Take the square root of both sides:
![\begin{gathered} \sqrt[]{(2+t)^2}=\sqrt[]{28} \\ \\ 2+t=5.3 \\ \\ t=5.3-2 \\ \\ t=3.3\approx4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kw62p5hirqt44mtle3ryz2ita4c9n41t2b.png)
Therefore, the month will be the 4th month which is April.
ANSWER:
(a). 5
(b). April