Given a figure of triangle ABC, whose side BC is 12 and angle A and angle B are 60 degrees.
We have to find the area of a triangle.
The area of the triangle ABC is:
![A=(1)/(2)* CD* AB](https://img.qammunity.org/2023/formulas/mathematics/college/vk6g6qz19sczwfebhaiitpfj9h87gjz941.png)
Here, we'll use the trigonometric function sine to find the length of the side CD.
In triangle BDC,
![\begin{gathered} \sin 60=(CD)/(BC) \\ \frac{\sqrt[]{3}}{2}=(CD)/(12) \\ CD=\frac{12\sqrt[]{3}}{2} \\ CD=6\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/exz5vxhiabqlzbckilv47880zywxjdvo9j.png)
Since two angles of the triangle are given 60 degrees. So, the triangle ABC is an equilateral triangle. Therefore, AB = BC = 12.
Now, the area will be:
![\begin{gathered} A=(1)/(2)*6\sqrt[]{3}*12 \\ =36\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k5c2lzfzhfld5ow7zhyrra6m6agpk9iin5.png)
Thus, option 3 is correct.