Answer: for the given aqueous solution, the [OH-] value is 1.0 x 10^-11 M
Step-by-step explanation:
The question requires us to calculate the concentration of OH- ions ([OH-]) in an aqueous solution, knowing that the concentration of H+ ions ([H+]) is 1.0 x 10^-3 M.
To solve this problem, we can consider the self-ionization of water and its correspondent ionization constant:
![2H_2O_((l))\rightleftarrows H_3O_((aq))^++OH_((aq))^-\text{ K}_w=1.00*10^(-14)](https://img.qammunity.org/2023/formulas/chemistry/college/91e4gkupgry2o4cfjpuogivb2ts2i5ma7k.png)
Note that the constant of equilibrium expression for the reaction above, Kw, can be written as:
![K_w=[H_3O^+\rbrack*[OH^-\rbrack](https://img.qammunity.org/2023/formulas/chemistry/college/g2qc5o8xh13uev4t28gyqkkdlneye0gg3q.png)
Also, note that H3O+ ions are equivalent to H+ ions.
Therefore, we can rearrange the equation above to calculate the concentration of OH- ions in an aqueous solution, knowing that the equilibrium constant for the self ionization of water is 1.00 x 10^-14 and that the concentration of H+ ions in the solution is 1.0 x 10^-3:
![\begin{gathered} K_w=[H_3O^+\rbrack*[OH^-\rbrack\rightarrow[OH^-\rbrack=(K_w)/([H_3O^+\rbrack) \\ \\ [OH^-\rbrack=(1.00*10^(-14))/(1.0*10^(-3))=1.0*10^(-11)M \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/college/mn7rcz368sovjnxovoiw9cc7ot4ia56k3n.png)
Therefore, for the given aqueous solution, the [OH-] value is 1.0 x 10^-11 M.