11We are given a problem that can be exemplified in the following diagram:
Since the ladder, the wall and the floor form a right triangle we can use the Pythagorean theorem:
![h^{2^{}}=a^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/a1ib1lmc3cy0gm8ebxjk51q2zbl5lv5c2t.png)
Where
![\begin{gathered} h=\text{hypotenuse} \\ a=\text{height} \\ b=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tsbihll4skakzznsehdchmdqia1ni1v4m1.png)
In this case, the hypotenuse is the length of the ladder and the height is the height of the window. Replacing the known values:
![(20)^2=(18)^2+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/jp9mkej9bmcx888awy9odph9cs2lh23iqw.png)
Solving the square:
![400=325+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/u9iokq0fy687cs4t7nq7sgly8h5zbw8r43.png)
Now we solve for "b", first by subtracting 325 to both sides:
![400-325=b^2](https://img.qammunity.org/2023/formulas/mathematics/college/3zo4s5o1iw9wss6wgwa1l8sdqhhvpyin25.png)
Solving the operation:
![75=b^2](https://img.qammunity.org/2023/formulas/mathematics/college/7yg8n5nrak7qujo9dn22tbxar6d2c0bl3k.png)
Taking square root to both sides:
![\sqrt[]{75}=b](https://img.qammunity.org/2023/formulas/mathematics/college/mpbeqfwtthnkkbvklhkpwedksko2zllno5.png)
Solving the square root:
![8.7=b](https://img.qammunity.org/2023/formulas/mathematics/college/b7knksqsrrlw8lqzm7ixi3tzcy02qntbn2.png)
Therefore, the foot of the ladder is 8.7 feet from the building.