Given the system of equations:
![\begin{gathered} 2x+4y=7.8\rightarrow(1) \\ 9x-5y=0.6\rightarrow(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i1n5zr66fthwvsgtalre27mehx3s7gnj75.png)
We will solve the system using the substitution method.
Solve the equation (1) for (x):
![\begin{gathered} 2x=-4y+7.8\rightarrow(/2) \\ x=-2y+3.9\rightarrow(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ta2i9vggls606yuufwt05vdpc8u1fufdy1.png)
Substitute with (x) from equation (3) into equation (2)
![9(-2y+3.9)-5y=0.6](https://img.qammunity.org/2023/formulas/mathematics/college/q9wewfy0jlkl2wts3rquv4gy2tzt4g4gdu.png)
Solve the equation to find (y)
![\begin{gathered} 9\cdot(-2y)+9\cdot3.9-5y=0.6 \\ -18y+35.1-5y=0.6 \\ -18y-5y=0.6-35.1 \\ -23y=-34.5 \\ y=(-34.5)/(-23)=1.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6sm14oawl7rwr1zc7kmhexogmwibcvh9w1.png)
Substitute with (y) into equation (3) to find (x)
![\begin{gathered} x=-2\cdot1.5+3.9 \\ x=-3+3.9 \\ x=0.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n41zkrhkg53m3nu5hupllywst6rl39ns5c.png)
So, the answer will be:
![(x,y)=(0.9,1.5)](https://img.qammunity.org/2023/formulas/mathematics/college/8pc7ova2mob91gfxd4jtojn0fzjnqrc2tz.png)