we have the equation
![16y^2-x^2+x-4y-9=0](https://img.qammunity.org/2023/formulas/mathematics/college/r43binelpz4lbutd3pfwe60ur814am7240.png)
step 1
Group similar terms and move the constant term to the right side
![(16y^2-4y)+(-x^2+x)=9](https://img.qammunity.org/2023/formulas/mathematics/college/vtcvhzgvka214ltwme605t5komn27hb7oc.png)
step 2
Factor 16 in the first term and factor -1 in the second term
![16(y^2-(y)/(4))-(x^2-x)=9](https://img.qammunity.org/2023/formulas/mathematics/college/lr5rcqhpotw1wvp9nq2cyk2pi84pa4lxme.png)
step 2
Complete the square twice
![16(y^2-(y)/(4)+(1)/(64)-(1)/(64))-(x^2-x+(1)/(4)-(1)/(4))=9](https://img.qammunity.org/2023/formulas/mathematics/college/qkfzyri1uxv47zgs4dvl9g5qy5x0v4rnn5.png)
![16(y^2-y\/4+1\/64)-(x^2-x+1\/4)=9+(1)/(4)-(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/elp89mtdn4hk5g0z7oys8i2sg1sp99xeo2.png)
step 3
Rewrite as perfect squares
![16(y-(1)/(8))^2-(x-(1)/(2))^2=9](https://img.qammunity.org/2023/formulas/mathematics/college/wp4w5y8g9a4jbfvajmvp4e0mp19hjeebht.png)
step 4
Divide both sides by 9
![(16(y-1\/8)^2)/(9)-((x-1\/2)^2)/(9)=1](https://img.qammunity.org/2023/formulas/mathematics/college/neayso5vtjt4qetnrq2awf5pym9cexsy2w.png)
therefore
The answer is Hyperbola