141,926 views
5 votes
5 votes
Can you please help

User DaxChen
by
3.2k points

1 Answer

5 votes
5 votes

Lets first find the derivative of f:


(d)/(dx)(e^(2x)+e^(-x))=e^(-x)(2e^(3x)-1)

Now lets set the derivative equal to zero to find the minimum value:


e^(-x)(2e^(3x)-1)=0
(2e^(3x)-1)=0
x=(-ln(2))/(3)

And replacing that value of x, we have:


e^{2((-\ln(2))/(3))}+e^{-((-\ln(2))/(3))}
e^{(-2\ln (2))/(3)}+e^{((\ln (2))/(3))}
\frac{3\sqrt[3]{2}}{2}

The local minimum of f is at:


((-ln(2))/(3),\frac{3\sqrt[3]{2}}{2})

User Underscore
by
3.8k points