Step-by-step explanation
We are given the function
![f(x)=6x^2-4x](https://img.qammunity.org/2023/formulas/mathematics/college/xhvj2lovq0q7to3ki3rx3g44fkkbed4nu3.png)
for part A
we are to find the derivative of the line tangent to the graph of f at x = 2
So, we will have
![f^(\prime)(x)=12x-4](https://img.qammunity.org/2023/formulas/mathematics/college/3k77oh2xfisv8qtls8ml8upik5sfskg0e6.png)
when x =2,
![f^(\prime)(x)=12(2)-4=24-4=20](https://img.qammunity.org/2023/formulas/mathematics/college/1kb2az858d3kvbwp0nnukux7at6250qebk.png)
Thus, the slope at x is 20
For part B
To get the equation of the line tangent to the graph at x =2, we will substitute x =2 into f(x)
![f(2)=6(2)^2-4(2)=6*4-8=24-8=16](https://img.qammunity.org/2023/formulas/mathematics/college/8yjzvovu19ed1w0uosbdul3zw4t1m3r40l.png)
Thus, using the formula
![\begin{gathered} y=mx+c \\ where \\ y=16,\text{ m=20,x=2} \\ 16=20*2+c \\ 16=40+c \\ c=16-40 \\ c=-24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k9nmymaav0hspma8ep4uae95d4pz5l65y4.png)
Therefore, the equation is
![y=20x-24](https://img.qammunity.org/2023/formulas/mathematics/college/fx7sjhz4tfnsjd4j9vseuszpwwbtmg66v4.png)
Thus, the tangent line is: y= 20x -24