find the equation of the line that pass through points (12,-1) and (4,-5)
find the slope of the line
![\begin{gathered} m=\frac{_{}y_2-y_1_{}}{x_2-x_1} \\ m=(-5-(-1))/(4-(12)) \\ m=(-4)/(-8) \\ m=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k3kmzpb1htnzbjqiwa75jmw4llkywg3oo0.png)
find the y intercept replacing one of the points
![\begin{gathered} y=(1)/(2)x+b \\ -5=(1)/(2)(4)+b \\ -5=2+b \\ -5-2=b \\ -7=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xiz5c2sn7s5yozitak7rj9nbqu7816wqva.png)
write the complete equation
![y=(1)/(2)x-7](https://img.qammunity.org/2023/formulas/mathematics/college/t4v010ef46qk6th8qf58mtr7uvcqog28pj.png)
replace the coordinate x of the points into the equation, if y is equal to the coordinate then the points lie on the same line.
when x=6
![\begin{gathered} y=(1)/(2)(6)-7 \\ y=3-7 \\ y=-4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cm6oi2wss8dbm9a6z59m4edqctu838tpe9.png)
the point (6,-3) does not lie on the same line
when x=0
![\begin{gathered} y=(1)/(2)(0)-7 \\ y=-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6n2mmlpi214iq3zl0lwqa95rzz1d71mstk.png)
the point (0,7) lies on the same line.
when x=-5
![\begin{gathered} y=(1)/(2)(-5)-7 \\ y=-2.5-7 \\ y=-9.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vmnzl4a4giwhcm7s7eo5gf2mre7cmam3eh.png)
the point (-5,4) does not lie on the same line
when x=2
![\begin{gathered} y=(1)/(2)(2)-7 \\ y=1-7 \\ y=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rpp2nwifw3skam6oy0gyzyvzcbn16ramje.png)
the point (2,-6) lies on the same line
when x=16
![\begin{gathered} y=(1)/(2)(16)-7 \\ y=8-7 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d1403t8ro2wjipbh96bds6hrncxfog0g6h.png)
the point (16,1) lies on the same line
when x=-4
![\begin{gathered} y=(1)/(2)(-4)-7 \\ y=-2-7 \\ y=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5mqtgyztb3alod7j4vuhn17ymv1bz6ojt3.png)
the point (-4,5) does not lie on the same line.
The points that will lie on the same line will be (0,-7);(2,-6);(16,1)