We are given the coordinates of the center and one point of a circle. To determine the radius we must determine the distance between the two points. To do that we will use the following formula:
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
Where:
![\begin{gathered} (x_1,y_1)=(0,4) \\ (x_2,y_2)=(-6,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w04sr3nhbrje4jhdj23zwwomqxg5hnzbw3.png)
Replacing in the formula for the distance:
![d=\sqrt[]{(-6-0)^2+(4-4)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/73929ys34e2n0714igl05j9hhpwy2vexts.png)
Solving the operations:
![\begin{gathered} d=\sqrt[]{(-6)^2+0^2} \\ d=\sqrt[]{36} \\ d=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mssjyubhvcui718dl3r9qradeliew5k50i.png)
Therefore, the radius of the circle is 6.