We need to determine which of the given points lies on the circle with the equation:
![x^(2)+(y-12)^(2)=25^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ealfavjboc9jfbhoftb9adxssu4el7q1ao.png)
In order to do so, we can replace x with the first coordinate of the point, and y with the second coordinate and see if the equation holds true.
A. For the point (20,-3), we have:
![\begin{gathered} 20^(2)+(-3-12)^(2)=25^(2) \\ \\ 400+15^(2)=625 \\ \\ 400+225=625 \\ \\ 625=625 \\ (TRUE) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qs8y3imhyheviig909pu1aa0smdt5tfqty.png)
Therefore, point (20,-3) lies on the circle.
For the other points, we have:
![\begin{gathered} (-7)^(2)+(24-12)^(2)=625 \\ \\ 49+144=625 \\ \\ 193=625 \\ (FALSE) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9gxkxvhzfwnpo3il66ihjk74pdj0gexfew.png)
![\begin{gathered} 0^(2)+(13-12)^(2)=625 \\ \\ 1=625 \\ (FALSE) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h0wnp7jbv0wwkemy16ma50dkz5rfcf4i3t.png)
![\begin{gathered} (-25)^(2)+(-13-12)^(2)=625 \\ \\ 625+625=625 \\ (FALSE) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/z73dr6o9l8zhkhygy99t78u5ghhva2rx20.png)
Therefore, the only correct option is A: (20,-3).