General form y= ax^2+bx+c
standard form y = a(x-h)^2+k
where
(h,k)= vertex = (7,2)
Since the zero are at -1 and 15 we have the points
(-1,0) and (15,0)
We will use one of the points (-1,0) and the vertex in the general form:
0= a(-1-7)^2+2
0= a(-8)^2+2
0= a64+2
-2 =a64
-2/64 =a
-1/32 =a
y= -1/32 (x-7)^2+2
y =-1/32 (x-7)(x-7)+2
y= -1/32 (x^2-14x+49)+2
y= -1/32 x^2+7/16x-49/32+2
y= -1/32x^2+7/16x-113/32