SOLUTION:
Step 1:
In this question, we are given the following:
Which equation represents the line passing through the point (-5, 12) and perpendicular to the line y=2/3x +14 ?
Step 2:
The details of the solution are as follows:
![\begin{gathered} Given\text{ that the equation is given as:} \\ \text{y = }(2x)/(3)\text{ + 14} \\ compari\text{ng this with:} \\ \text{y = mx + c , we have that:} \\ \text{m}_1\text{ =}(2)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ilu1lvr19z16bu2oigl5mipd3dacr37503.png)
![\begin{gathered} Now,\text{ for perpendicular lines, we have that:} \\ m_1m_2\text{ = -1} \\ Then,\text{ we have that:} \\ m_2\text{ = }(-1)/(m_1)\text{ , where m}_1\text{ = }(2)/(3) \\ Then, \\ m_2\text{ = -1 }/\text{ }(2)/(3) \\ m_2=\text{ -1 x }(3)/(2) \\ m_2\text{ = }(-3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x9nvyotzgew3lxuajo2fg1poqytpse3f0v.png)
Step 3:
![\begin{gathered} Given\text{ that:} \\ m_2=(-3)/(2) \\ (\text{ x}_(1,)y_1)\text{ = \lparen -5, 12 \rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f4ln230ay8w60wmip2nc9ahiuq7aex8ow8.png)
![\begin{gathered} Using\text{ the new equation:} \\ y\text{ -y}_1\text{ = m \lparen x - x}_1) \\ y\text{ - \lparen12\rparen = }(-3)/(2)\text{ \lparen x --5\rparen} \\ \text{y -12 = }(-3)/(2)(\text{ x+ 5 \rparen} \\ Multiply\text{ through by 2, we have that:} \\ 2y\text{ - 24 = - 3 \lparen x + 5\rparen} \\ 2y\text{ - 24 = -3x - 15} \\ Re-arranging,\text{ we have that:} \\ 3x+\text{ 2y - 24 + 15 = 0} \\ 3x+\text{ 2y -9 = 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8fqmsqaagoy95477n127nc36f1sshbqoh7.png)
CONCLUSION:
The final answer is:
![3x\text{ + 2y -9 = 0}](https://img.qammunity.org/2023/formulas/mathematics/college/emb41pd46erusfx03u7by60zof0egq8uxm.png)