ANSWER
C = -4
Step-by-step explanation
Given:
15x +20y= -10
6x + 8y= c
Thus we have:
a1 = 15x, b1 = 20y, c1 = -10
and
a2 = 6x, b2 = 8y, c2 = c
The condition now is:
![(a_1)/(a_2)\text{ = }(b_1)/(b_2)\text{ = }(c_1)/(c_2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6oyzo6xvdff5p8aiejzj7v81fmcxm0qb99.png)
i.e:
![(15x)/(6x)=(20y)/(8y)\text{ = }(-10)/(c)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ghhyn6acu6y18js51oj1xlbri4hz27ia4l.png)
Determine c using the x
![\begin{gathered} (15x)/(6x)=(-10)/(c) \\ (5)/(2)\text{ = }(-10)/(c) \\ 5c\text{ = -20} \\ c\text{ = -}(20)/(5) \\ c\text{ = -4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1n3wde7ceirsfjtkn9bfwvn0dtytaeki7z.png)
Determine c using the y
![\begin{gathered} (20y)/(8y)\text{ = }(-10)/(c) \\ (10)/(4)\text{ = }(-10)/(c) \\ 10c\text{ = -40} \\ c\text{ = }(-40)/(10) \\ c\text{ = -4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qn81bbxqu6pwp3tpxnlnwjfu3ggo0b0yok.png)
Hence, the value of C that will make the systems a dependent system is -4.