54.9k views
2 votes
Solve the following system of equations using an inverse matrix. You must alsoindicate the inverse matrix, A-1, that was used to solve the system. You mayoptionally write the inverse matrix with a scalar coefficient.-4x+10y = -2-x+ 2=-3.

Solve the following system of equations using an inverse matrix. You must alsoindicate-example-1
User Techayu
by
5.1k points

1 Answer

2 votes

The coefficient matrix A is,


A=\begin{bmatrix}-4 & 10 \\ -1 & 2\end{bmatrix}

The constant matrix B is,


B=\begin{bmatrix}-2 \\ -3\end{bmatrix}

We have the equation,


AX=B

Solving for X, we have,


\begin{gathered} AX=B \\ X=A^(-1)B \end{gathered}

Now, if we have a 2 x 2 matrix of the form,


A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}

The inverse of this matrix is given by the formula,


A^(-1)=(1)/(ad-bc)\begin{bmatrix}d & -b \\ -c & a\end{bmatrix}

So, let's find the inverse matrix using this formula. Shown below:


\begin{gathered} A^(-1)=(1)/(ad-bc)\begin{bmatrix}d & -b \\ -c & a\end{bmatrix} \\ A^(-1)=(1)/(-8--10)\begin{bmatrix}2 & -10 \\ 1 & -4\end{bmatrix} \\ A^(-1)=(1)/(2)\begin{bmatrix}2 & -10 \\ 1 & -4\end{bmatrix} \\ A^(-1)=\begin{bmatrix}1 & -5 \\ (1)/(2) & -2\end{bmatrix} \end{gathered}

Now, we calculate X,


\begin{gathered} X=A^(-1)B \\ X=\begin{bmatrix}1 & -5 \\ (1)/(2) & -2\end{bmatrix}\begin{bmatrix}-2 \\ -3\end{bmatrix} \\ X=\begin{bmatrix}(1)(-2)+(-5)(-3) \\ ((1)/(2))(-2)+(-2)(-3)\end{bmatrix} \\ X=\begin{bmatrix}-2+15 \\ -1+6\end{bmatrix} \\ X=\begin{bmatrix}13 \\ 5\end{bmatrix} \end{gathered}

Thus, the solution of the system is >>>

x = 13y = 5
User Dmitry  Simakov
by
5.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.