151k views
4 votes
Determine if each statement is True or False based on the graph

Determine if each statement is True or False based on the graph-example-1

1 Answer

3 votes

a)


\begin{gathered} \lim _(x\to2^-)f(x)=3 \\ _{\text{ }}False \end{gathered}

b)


\begin{gathered} \lim _(x\to2^+)f(x)=0 \\ _{\text{ }}False \end{gathered}

c)


\begin{gathered} \lim _(x\to2^-)f(x)=\lim _(x\to2^+)f(x) \\ _{\text{ }}False \end{gathered}

d)


\begin{gathered} \lim _(x\to2)f(x)_{\text{ }}exists \\ _{\text{ }}False \end{gathered}

e)


\begin{gathered} \lim _(x\to4)f(x)_{\text{ }}exists;_{\text{ }}True \\ _{\text{ }}since \\ \lim _(x\to4^-)f(x)=3_{\text{ }} \\ \lim _(x\to4^+)f(x)=3_{\text{ }} \end{gathered}

f)


\begin{gathered} \lim _(x\to4)f(x)=f(4) \\ _{\text{ }}False \\ f(4)=-1 \end{gathered}

g) f is continuous at x = 4:


\begin{gathered} _{\text{ }}false \\ \lim _(x\to4)f(x)\\e f(4) \end{gathered}

h) f is continuous at x = 0


_{\text{ }}True

i)


\begin{gathered} \lim _(x\to3)f(x)=\lim _(x\to5)f(x)=3 \\ True_{\text{ }} \end{gathered}

j) f is continuous at x = 2?

False

User Chris Karcher
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories