151k views
4 votes
Determine if each statement is True or False based on the graph

Determine if each statement is True or False based on the graph-example-1

1 Answer

3 votes

a)


\begin{gathered} \lim _(x\to2^-)f(x)=3 \\ _{\text{ }}False \end{gathered}

b)


\begin{gathered} \lim _(x\to2^+)f(x)=0 \\ _{\text{ }}False \end{gathered}

c)


\begin{gathered} \lim _(x\to2^-)f(x)=\lim _(x\to2^+)f(x) \\ _{\text{ }}False \end{gathered}

d)


\begin{gathered} \lim _(x\to2)f(x)_{\text{ }}exists \\ _{\text{ }}False \end{gathered}

e)


\begin{gathered} \lim _(x\to4)f(x)_{\text{ }}exists;_{\text{ }}True \\ _{\text{ }}since \\ \lim _(x\to4^-)f(x)=3_{\text{ }} \\ \lim _(x\to4^+)f(x)=3_{\text{ }} \end{gathered}

f)


\begin{gathered} \lim _(x\to4)f(x)=f(4) \\ _{\text{ }}False \\ f(4)=-1 \end{gathered}

g) f is continuous at x = 4:


\begin{gathered} _{\text{ }}false \\ \lim _(x\to4)f(x)\\e f(4) \end{gathered}

h) f is continuous at x = 0


_{\text{ }}True

i)


\begin{gathered} \lim _(x\to3)f(x)=\lim _(x\to5)f(x)=3 \\ True_{\text{ }} \end{gathered}

j) f is continuous at x = 2?

False

User Chris Karcher
by
5.9k points