227k views
5 votes
Determine the amount of and type of solutions of y=-x^2+8x-13

User Hentold
by
8.8k points

1 Answer

5 votes

Given:


y=-x^2+8x-13

To determine the amount and type of solutions, apply the quadratic formula below:


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

Replace 0 with y and solve for x.

Where:

a= -1

b= 8

c = -13

Thus, we have:


0=-x^2+8x-13


\begin{gathered} x=\frac{-8\pm\sqrt[]{8^2-4(-1)(-13)}}{2(-1)} \\ \\ x=\frac{-8\pm\sqrt[]{64-52}}{2(-1)} \\ \\ x=\frac{-8\pm\sqrt[]{12}}{-2} \\ \\ x=\frac{-8\pm\sqrt[]{4\ast3}}{-2} \\ \\ x=\frac{-8\pm\sqrt[]{2^2\ast3}}{-2} \end{gathered}

Solving further:


\begin{gathered} x=\frac{-8\pm2\sqrt[]{3}}{-2} \\ \\ x=4\pm2\sqrt[]{3} \\ \\ \\ x=4+2\sqrt[]{3},\text{ and 4-2}\sqrt[]{3} \end{gathered}

ANSWER:


x=4\pm2\sqrt[]{3}

User Paul Maserrat
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories