227k views
5 votes
Determine the amount of and type of solutions of y=-x^2+8x-13

User Hentold
by
4.2k points

1 Answer

5 votes

Given:


y=-x^2+8x-13

To determine the amount and type of solutions, apply the quadratic formula below:


x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}

Replace 0 with y and solve for x.

Where:

a= -1

b= 8

c = -13

Thus, we have:


0=-x^2+8x-13


\begin{gathered} x=\frac{-8\pm\sqrt[]{8^2-4(-1)(-13)}}{2(-1)} \\ \\ x=\frac{-8\pm\sqrt[]{64-52}}{2(-1)} \\ \\ x=\frac{-8\pm\sqrt[]{12}}{-2} \\ \\ x=\frac{-8\pm\sqrt[]{4\ast3}}{-2} \\ \\ x=\frac{-8\pm\sqrt[]{2^2\ast3}}{-2} \end{gathered}

Solving further:


\begin{gathered} x=\frac{-8\pm2\sqrt[]{3}}{-2} \\ \\ x=4\pm2\sqrt[]{3} \\ \\ \\ x=4+2\sqrt[]{3},\text{ and 4-2}\sqrt[]{3} \end{gathered}

ANSWER:


x=4\pm2\sqrt[]{3}

User Paul Maserrat
by
4.4k points