We are given the following expression:
![\frac{\sqrt[4]{y^3}}{\sqrt[5]{y^3}}](https://img.qammunity.org/2023/formulas/mathematics/college/47kcgr39xicjvgnb0elzs94bckjxupp7ac.png)
To convert to rational exponents we will use the following relationship:
![\sqrt[y]{a^x}=a^{(x)/(y)}](https://img.qammunity.org/2023/formulas/mathematics/college/yp2xole0rzgqysvndgfyyixweqc8fgrlcm.png)
Applying the relationship we get;
![\frac{\sqrt[4]{y^3}}{\sqrt[5]{y^3}}=\frac{y^{(3)/(4)}}{y^{(3)/(5)}}](https://img.qammunity.org/2023/formulas/mathematics/college/1xixuh8rosmry8bja7grmu78qfb8aedfeu.png)
Now, we will use the following property of exponents on the denominator:
![(1)/(a^x)=a^(-x)](https://img.qammunity.org/2023/formulas/mathematics/college/5uswk7ajs1sceut6bdapqn29fn7fsilmvt.png)
Therefore, we can bring the denominator up by inverting the sign of the exponents, like this:
![\frac{y^{(3)/(4)}}{y^{(3)/(5)}}=y^{(3)/(4)}y^{-(3)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/college/yv933fxnbmk2x5ygziiz7330hj0eg8r68j.png)
Now, we use the following property of exponents:
![a^xa^y=a^(x+y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wlcboc096i6nstvk8vg0oknzpi8kjnw3ex.png)
Applying the property we get:
![y^{(3)/(4)}y^{-(3)/(5)}=y^{(3)/(4)-(3)/(5)}](https://img.qammunity.org/2023/formulas/mathematics/college/9j97bm7b9m0r5evu1lmtghhv0ea91xszlu.png)
Adding the exponents we get:
![y^{(3)/(4)-(3)/(5)}=y^{(3)/(20)}](https://img.qammunity.org/2023/formulas/mathematics/college/lxvel75cndd2u3xcigb4qstmwpxdz3shes.png)
Since we can't simplify any further this is the final answer.