![3a^2-9a-30](https://img.qammunity.org/2023/formulas/mathematics/college/u9zjuixfhcvq7919qd98ynakk70f3ejrm6.png)
Notice that all the terms are divisible by 3. First we factor out 3.
![\begin{gathered} 3a2-9a-30 \\ 3(a^2-3a-10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lhwsts1fdwfmfgjs0vvxd2bqhl7br19s34.png)
Also, the first two terms has a in it. We can factor out a.
![\begin{gathered} 3(a^2-3a-10) \\ 3\lbrack a(a^{}-3)-10\rbrack \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/od3ft9ycpqt7k6fmbw4z6n99463dvm9i6v.png)
Notice that we use the square bracket to indicate the distribution of the first factor which is 3, and the parenthesis indicates the distribution of the second factor a which only apply to the first two terms.
Answer:
![3\lbrack a(a^{}-3)-10\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/t0tin6r32gjstwmfq1eajhqd0cbcxwkr61.png)