![\text{Circumference}=\sqrt[]{4868\pi^{}}\text{ f}eet](https://img.qammunity.org/2023/formulas/mathematics/college/tkf67mvfbpc4ultoctzsyk9annwll8snlu.png)
Step-by-step explanation
Step 1
the area of a circle is given by
![\begin{gathered} \text{Area}_(circle)=\pi r^2=\pi((d^2)/(4)) \\ \text{where r is the radius and d is the diameter} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mcadyxt2cu9wbxpi0a2qtson51mtnuei91.png)
and the circumference is given by
![\text{Circumference}=\text{ }\pi\cdot diameter](https://img.qammunity.org/2023/formulas/mathematics/college/hb4qhffnco46lvrmx3q4my8kccbyaiy4fr.png)
then
let
Area=1217 square feet
replace, and isolate diameter
![\begin{gathered} \text{Area}_(circle)\pi((d^2)/(4)) \\ \text{1217=}\pi((d^2)/(4)) \\ Mu\text{ltiply both sides by 4} \\ \text{1217}\cdot4\text{=}\pi((d^2)/(4))\cdot4 \\ 4868=\pi d^2 \\ \text{divide both sides by }\pi \\ (4868)/(\pi)=(\pi d^2)/(\pi) \\ (4868)/(\pi)=d^2 \\ \text{square root in both sides} \\ \sqrt{(4868)/(\pi)}=√(d^2) \\ \sqrt[]{(4868)/(\pi)}=\text{diameter} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kl9qjqp3dq3f2zhbi71rpca419sgnjpdn4.png)
Step 2
now, we have the diameter, replace it in the circumference formula
let
diameter=39.36 ft
replace
![\begin{gathered} \text{Circumference}=\text{ }\pi\cdot diameter \\ \text{Circumference}=\text{ }\pi\cdot\sqrt[]{(4868)/(\pi)} \\ \text{Circumference}=\sqrt[]{(4868\pi^2)/(\pi)} \\ \text{Circumference}=\sqrt[]{4868\pi^{}} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rvdofztefdwkmlkq9av2m7danlic58hkny.png)
I hope this helps you