118k views
4 votes
Evaluate integrate |x - 2| dx from 0 to 4

Evaluate integrate |x - 2| dx from 0 to 4-example-1

1 Answer

4 votes

Solution:

Given:


\int_0^4|x-2|dx

Split the integral;


\begin{gathered} \int_0^4|x-2|dx=\int_0^2-(x-2)dx+\int_2^4(x-2)dx \\ ==\int_0^2(-x+2)dx+\int_2^4(x-2)dx \end{gathered}

Integrating the expression;


\begin{gathered} =(-(x^2)/(2)+2x)|^2_0+((x^2)/(2)-2x)|^4_2 \\ Introducing\text{ the limits;} \\ =[(-(2^2)/(2)+2(2))-0]+[((4^2)/(2)-2(4))-((2^2)/(2)-2(2))] \\ =(-2+4)-(0)+(8-8)-(2-4) \\ =2+0+0-(-2) \\ =2+2 \\ =4 \end{gathered}

Therefore, the answer is 4.

OPTION D is correct.

User Dexter Huinda
by
4.7k points