Answer: x = 1
Given:
![3^(x+4)=243](https://img.qammunity.org/2023/formulas/mathematics/college/sqsmfn9hlg2ufeokpk7x4uwiaulzgmxtg6.png)
First, we need to express 243 as a number with base 3 raised to a certain exponent.
From this, if we take 3 to the fifth power, we will get the value of 243
![3^5=243](https://img.qammunity.org/2023/formulas/mathematics/college/b2ywukyrmszatdxcegqnttjf05cswnqwtc.png)
Now, we can rewrite the given equation as
![3^(x+4)=3^5](https://img.qammunity.org/2023/formulas/mathematics/college/dzolc5ykasl8wdlslrfnm8m7lag87swgmy.png)
Now that we have the same base for both sides of the equation, we can now focus on solving the exponents for the value of x.
![x+4=5](https://img.qammunity.org/2023/formulas/mathematics/college/7rlv3s65dx5j8uztmk8tvnh5qgi2y0yibf.png)
*Solve for x
![x=5-4](https://img.qammunity.org/2023/formulas/mathematics/college/14y9wy7p0brvkw9mbm6cdvxmcqsni89jr4.png)
![x=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/xsb7940fuqxllob7pwpm2jsl9ruu78r3uv.png)
Therefore, the value of x = 1.
To check:
![3^(x+4)=243](https://img.qammunity.org/2023/formulas/mathematics/college/sqsmfn9hlg2ufeokpk7x4uwiaulzgmxtg6.png)
![3^((1)+4)=243](https://img.qammunity.org/2023/formulas/mathematics/college/1ag24iynqjkqp788y5o4d2ea3hcx2z1hc0.png)
![3^5=243](https://img.qammunity.org/2023/formulas/mathematics/college/b2ywukyrmszatdxcegqnttjf05cswnqwtc.png)
![243=243](https://img.qammunity.org/2023/formulas/mathematics/college/h521x3906erxz549w55p9y2f9fedibpdfy.png)
To check