Answer:
The measure of NQ is 32 units.
Step-by-step explanation:
Given that R is a midpoint of NP and S is a midpoint of PQ, the by the Midpoint Theorem for Triangles, we have:
![RS=(1)/(2)* NQ](https://img.qammunity.org/2023/formulas/mathematics/college/d0z74fous57r4aoo8klcfwlhvpnrrd2v2r.png)
Substituting the given expressions, we have:
![\begin{gathered} 23-x=(1)/(2)(2x+18) \\ 2(23-x)=2x+18 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v79rbmenc57al62jvt6mcbh83b77x8cu0z.png)
Next, solve for x:
![\begin{gathered} 46-2x=2x+18 \\ 46-18=2x+2x \\ 28=4x \\ x=(28)/(4) \\ x=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jlp3wn4ng5e2dm6cn8nd7c1jn4z0vupzte.png)
Thus, the measure of NQ will then be:
![\begin{gathered} NQ=2x+18 \\ =2(7)+18 \\ =14+18 \\ =32\text{ units} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/75wnb4ixul9ixvne42st3ga03enf785p84.png)
The measure of NQ is 32 units.