Given:
![y=-2x^2+4x+11](https://img.qammunity.org/2023/formulas/mathematics/college/l7u0zj30znbss0y644h751v5ug132vp40z.png)
Required:
(a) Find parabola opens upward.
(b) Find the vertex.
(c) Find the X-intercepts.
(d) Find Y intercepts.
Step-by-step explanation:
The given equation is:
![y=-2x^(2)+4x+11](https://img.qammunity.org/2023/formulas/mathematics/college/gq2plxdehrw4woozl70b7z8b3hsvi8n59y.png)
Rewrite it as:
![\begin{gathered} y=-2(x^2-2x)+11 \\ y=-2(x^2-2x+1)+11+2 \\ y=-2(x-1)^2+13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5smy9sj7kyagzhdij66qlhxx1jw8ajmeu2.png)
Compare the equation with the standard equation
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
a = -2, h =1 and k =13
(a) Since the value of a = -2 < 0 so the parabola opens down.
(b) The vertex of the parabola is (h,k) .
Thus the vertex of given the parabola is (1, 13).
(c) At the X-intercept y = 0
![\begin{gathered} -2x^2+4x+11=0 \\ 2x^2-4x-11=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3y9im0h7848m34sumrmb4m86qtu5035rql.png)
The given equation is a quadratic equation.
Compare it with
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
solve it as
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/jr19ixi2zltkocy82qhxfiop5lyv4hzbkm.png)
(d) At the y-intercept x =0
![\begin{gathered} y=-2(0)^2+4(0)+11 \\ y=11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tv387xmxpey7n5au2xk18znerdcky1tfor.png)
Final Answer:
(a) Parabola opens downward
(b) vertex = (1, 13)
(d) y-intercept is 11