144k views
5 votes
Subtract the rational expressions in simplest form. Is this correct?

Subtract the rational expressions in simplest form. Is this correct?-example-1

1 Answer

4 votes

The rational expression is given to be:


(x-1)/(x+1)-(2x+3)/(2x+1)

STEP 1: Find the Lowest Common Multiplier (LCM) of the denominators


\text{LCM of }(x+1)\text{ and }(2x+1)\Rightarrow(x+1)(2x+1)

STEP 2: Adjust the fractions by dividing the LCM by the denominator of each fraction and multiplying the numerator and denominator by the result


\begin{gathered} For\text{ }(x-1)/(x+1) \\ Multiplier=((x+1)(2x+1))/(x+1)=2x+1 \\ \text{New fraction:} \\ \Rightarrow((x-1)(2x+1))/((x+1)(2x+1)) \end{gathered}

and


\begin{gathered} For\text{ }(2x+3)/(2x+1) \\ Multiplier=((x+1)(2x+1))/(2x+1)=x+1 \\ \text{New fraction:} \\ \Rightarrow((2x+3)(x+1))/((2x+1)(x+1)) \end{gathered}

Hence, the expression becomes:


\Rightarrow((x-1)(2x+1))/((x+1)(2x+1))-((2x+3)(x+1))/((2x+1)(x+1))

STEP 3: Apply the fraction rule


(a)/(b)-(c)/(b)=(a-c)/(b)

Hence, the expression becomes:


\Rightarrow((x-1)(2x+1)-(2x+3)(x+1))/((x+1)(2x+1))

STEP 4: Expand and simplify the brackets using the FOIL method


\mleft(a+b\mright)\mleft(c+d\mright)=ac+ad+bc+bd

Hence, the expression becomes:


\begin{gathered} \Rightarrow((2x^2+x-2x-1)-(2x^2+2x+3x+3))/(2x^2+x+2x+1) \\ \Rightarrow((2x^2-x-1)-(2x^2+5x+3))/(2x^2+3x+1) \\ \Rightarrow(2x^2-2x^2-x-5x-1-3)/(2x^2+3x+1) \\ \Rightarrow(-6x-4)/(2x^2+3x+1) \end{gathered}

ANSWER:

The numerator is:


-6x-4

The denominator is:


2x^2+3x+1

User Robert Schillinger
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories