The rational expression is given to be:
![(x-1)/(x+1)-(2x+3)/(2x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/h2ja6835oosiukfjgq4gpddeev4fv6y5fw.png)
STEP 1: Find the Lowest Common Multiplier (LCM) of the denominators
![\text{LCM of }(x+1)\text{ and }(2x+1)\Rightarrow(x+1)(2x+1)](https://img.qammunity.org/2023/formulas/mathematics/college/ueo5zrfs93q6d10384e3dznq6pvq6txhat.png)
STEP 2: Adjust the fractions by dividing the LCM by the denominator of each fraction and multiplying the numerator and denominator by the result
![\begin{gathered} For\text{ }(x-1)/(x+1) \\ Multiplier=((x+1)(2x+1))/(x+1)=2x+1 \\ \text{New fraction:} \\ \Rightarrow((x-1)(2x+1))/((x+1)(2x+1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rl42p9ztd58d77b3lq0ubo1cztwxju1x0.png)
and
![\begin{gathered} For\text{ }(2x+3)/(2x+1) \\ Multiplier=((x+1)(2x+1))/(2x+1)=x+1 \\ \text{New fraction:} \\ \Rightarrow((2x+3)(x+1))/((2x+1)(x+1)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hzv8b4lpi1xgm64ipbkv4yslx0tyl13rrz.png)
Hence, the expression becomes:
![\Rightarrow((x-1)(2x+1))/((x+1)(2x+1))-((2x+3)(x+1))/((2x+1)(x+1))](https://img.qammunity.org/2023/formulas/mathematics/college/rcgza6i6yy84cv1jwssbj6u8nugagq7qmc.png)
STEP 3: Apply the fraction rule
![(a)/(b)-(c)/(b)=(a-c)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/x5wd842bj3v2yhyljtp4xt1w8q2y779gh3.png)
Hence, the expression becomes:
![\Rightarrow((x-1)(2x+1)-(2x+3)(x+1))/((x+1)(2x+1))](https://img.qammunity.org/2023/formulas/mathematics/college/4zvx8r6i4siuxsh66ossxcks3mrdk296ie.png)
STEP 4: Expand and simplify the brackets using the FOIL method
![\mleft(a+b\mright)\mleft(c+d\mright)=ac+ad+bc+bd](https://img.qammunity.org/2023/formulas/mathematics/college/ovf1vcmzbcje770sni8pcylweyg9inbu5g.png)
Hence, the expression becomes:
![\begin{gathered} \Rightarrow((2x^2+x-2x-1)-(2x^2+2x+3x+3))/(2x^2+x+2x+1) \\ \Rightarrow((2x^2-x-1)-(2x^2+5x+3))/(2x^2+3x+1) \\ \Rightarrow(2x^2-2x^2-x-5x-1-3)/(2x^2+3x+1) \\ \Rightarrow(-6x-4)/(2x^2+3x+1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqoldfnz31lzapsbfhdbvb6l1epejd0xtl.png)
ANSWER:
The numerator is:
![-6x-4](https://img.qammunity.org/2023/formulas/mathematics/college/2bhfc0mk3njttwrlotga9sy9l62v4wf8ml.png)
The denominator is:
![2x^2+3x+1](https://img.qammunity.org/2023/formulas/mathematics/college/vh47tkvrnrkd9uwn6n0pqhnk29h20gnf6m.png)