D
Step-by-step explanation
the slope of a line is given by
![\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{where} \\ P1(x_1,y_1) \\ P2(x_2,y_2) \\ \text{are 2 points from the line} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fszjdl0cr9p62xizk31pttt46euot8agbn.png)
Step 1
find the slope of the table
Let
P1(0,3)
P2(2,-2)
replace
![\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{replace} \\ \text{slope}=(-2-3)/(2-0)=(-5)/(2)=-(5)/(2)=-2.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fcvcqe8wdx3ixz2av02plolngy8g0jl3wd.png)
Step 2
find the slope of the line A)
let
P1(-1,3)
P2(-2,1)
replace and calculate
![\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{replace} \\ slope_A=(1-3)/(-2-(-1))=(-2)/(-1)=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oto7phjq57j4jhu0a8fkj10jf670aagklp.png)
Step 3
find the slope of function at B)
we have the equation in slope-intercept form
![\begin{gathered} y=mx+b \\ \text{where m is the slope} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7v5kr6fq9y5e7gxr7gpivlqpccjv4wv9jt.png)
so
![\begin{gathered} B)y=-(1)/(2)x-3 \\ so \\ \text{slope}=\text{ }(-1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hu9dv77dtecbmqakrejbyvfu9ob1joiw4r.png)
and
![\begin{gathered} C)y=-(5)/(2)x+1 \\ so \\ \text{slope}=\text{ -}(5)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d70nqvt7wfqmkw348feamnzyrpjf4vbzbz.png)
Step 4
finally, the slope of the line graphed at D)
Let
P1(1,-5)
P2(0,1))
replace
![\begin{gathered} \text{slope}=(\Delta y)/(\Delta x)=(y_2-y_1)/(x_2-x_1) \\ \text{replace} \\ slope_D=(1-(-5))/(0-1)=(1+5)/(-1)=(6)/(-1)=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ji2e2p4xzi2takky1fy27khnyoxv628e0.png)
so, we can conclude
![\begin{gathered} \text{slope(table)}=-(5)/(2)=-2.5 \\ \text{slope(A)}=2 \\ \text{slope(B)}=-(1)/(2)=-0.5 \\ \text{slope(C)}=-(5)/(2)=-2.5 \\ \text{slope(D)}=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rvhupmdxlqiwun4mw6x7ssz85ukxork5rj.png)
so, the function that has a lesser slopes than the one in the graph is
(D) -6
therefore, the answer is
D
I hope this helps you