ANSWER:
There is no inverse matrix
Explanation:
We have the following matrix:
![A=\begin{bmatrix}{-5} & {-5} & {0} \\ {0} & {-5} & {-5} \\ {4} & {0} & {-4}\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/yq10c9mwhrnqndu0rf8y2c8duvmykq5z2f.png)
The first thing we must do is calculate the determinant of the matrix in order to know whether or not it has an inverse:
![\begin{gathered} \det A=\mleft\lbrace-5\cdot\mleft(-5\mright)\cdot\mleft(-4\mright)\mright\rbrace+\mleft\lbrace-5\cdot\mleft(-5\mright)\cdot4\mright\rbrace+\mleft\lbrace0\cdot0\cdot0\mright\rbrace-\mleft\lbrace0\cdot\mleft(-5\mright)\cdot4\mright\rbrace-\mleft\lbrace-5\cdot\mleft(-5\mright)\cdot0\mright\rbrace-\mleft\lbrace-5\cdot0\cdot\mleft(-4\mright)\mright\rbrace \\ \det A=-100+100+0-0-0-0 \\ \det A=0 \end{gathered}]()
Since the determinant of A is 0, it means that it has no inverse