172k views
4 votes
Using the limit definition of a derivative, what is:5x^2 + 2x

User Ajay Ohri
by
8.2k points

1 Answer

2 votes

Let:


f(x)=5x^2+2x

Using the limit definition of a derivative:


f^(\prime)(x)=\lim _(h\to0)(f(x+h)-f(x))/(h)

so:


\begin{gathered} \lim _(h\to0)(5(x+h)^2+2(x+h)-5x^2-2x)/(h) \\ \lim _(h\to0)(5x^2+10xh+5h^2+2x+2h-5x^2-2x)/(h) \\ \end{gathered}

Add like terms:


\lim _(h\to0)(10xh+5h^2+2h)/(h)

Divide the numerator and the denominator by h:


\begin{gathered} \lim _(h\to0)10x+5h+2=10x+5(0)+2=10x+2 \\ so\colon \\ f^(\prime)(x)=10x+2 \end{gathered}

Answer:

f'(x) = 10x + 2

User Oluremi
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories