We will begin solving the question by sketching the image to solve the question
Given:
The length of the rectangle is 5 meters longer than the width
The area of the rectangle is 126 square meters
This means that L=5+w
We will use the relationship:
![\text{Area}=\text{length}* width](https://img.qammunity.org/2023/formulas/mathematics/college/ynhvoh7g8esd0lsmtyor69qellevug64cn.png)
![\begin{gathered} \text{Area}=(w+5)w=126 \\ \text{simplifying} \\ w^2+5w=126 \\ w^2+5w-126=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2xidm9v9lb44zwmg4es0ey2bhxzbwtp366.png)
Simplifying further
![w^2+14w-9w-126=0](https://img.qammunity.org/2023/formulas/mathematics/college/n9itddzzmn3q4xdodeieq9bjh9pvezfdpw.png)
![\begin{gathered} w(w+14)-9(w+14)=0 \\ (w+14)(w-9)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/umt0co9kldzlqr3icwtyxmf6ljr7yn9cgg.png)
![\begin{gathered} w=9 \\ or \\ w=-14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/krf3m4zx8uibhiwaip4781znb8xpdyzkd3.png)
The width can only be positive
so that
width = 9 meters
so that the length will be w+9
Length = w+9 =9 +5 =15
Length =15 meters
Therefore
width = 9 meters
Length = 14 meters