We are given a box that slides up a ramp. To determine the force of friction we will use the following relationship:
![F_f=\mu N](https://img.qammunity.org/2023/formulas/physics/college/5hhd66xtdpmpovx25tj2qp8l49i7ign07y.png)
Where.
![\begin{gathered} N=\text{ normal force} \\ \mu=\text{ coefficient of friction} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/46qldhzhooo7iaz7qvudcw4loqv9w4qdas.png)
To determine the Normal force we will add the forces in the direction perpendicular to the ramp, we will call this direction the y-direction as shown in the following diagram:
In the diagram we have:
![\begin{gathered} m=\text{ mass}_{} \\ g=\text{ acceleration of gravity} \\ mg=\text{ weight} \\ mg_y=y-\text{component of the weight. } \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/wuf4druvtss5fc3zfuoynhw97ggvn70w8m.png)
Adding the forces in the y-direction we get:
![\Sigma F_y=N-mg_y](https://img.qammunity.org/2023/formulas/physics/college/9p56e3dcm8co5epi8efod4v3mvl1hzv96f.png)
Since there is no movement in the y-direction the sum of forces must be equal to zero:
![N-mg_y=0](https://img.qammunity.org/2023/formulas/physics/college/3wmev42hs2sfbdfcvsgsx6l5nown4vli7s.png)
Now we solve for the normal force:
![N=mg_y](https://img.qammunity.org/2023/formulas/physics/college/k85ie2u09va7pv6rtgart9kmpsb8is9yuo.png)
To determine the y-component of the weight we will use the trigonometric function cosine:
![\cos 40=(mg_y)/(mg)](https://img.qammunity.org/2023/formulas/physics/college/kh6j3b8m82sk1bxr4wy8iph3hro26jf3w2.png)
Now we multiply both sides by "mg":
![mg\cos 40=mg_y](https://img.qammunity.org/2023/formulas/physics/college/pma9w2v5sbn0o0ousb40z6qvxpvs8p2bah.png)
Now we substitute this value in the expression for the normal force:
![N=mg\cos 40](https://img.qammunity.org/2023/formulas/physics/college/qw1g3g16ah1lj65zssrkzomljdabduw854.png)
Now we substitute this in the expression for the friction force:
![F_f=\mu mg\cos 40](https://img.qammunity.org/2023/formulas/physics/college/gjuiray9h7mj2h8n3xio8lgnth5u12slwp.png)
Now we substitute the given values:
![F_f=(0.2)(10\operatorname{kg})(9.8(m)/(s^2))\cos 40]()
Solving the operations:
![F_f=15.01N](https://img.qammunity.org/2023/formulas/physics/college/42cxvazaxyilo6cqc8p58tcp7crqv68il3.png)
Therefore, the force of friction is 15.01 Newtons.