102k views
0 votes
Find the standard deviation ofthe given data rounded to thenearest hundredth.12, 53, 141, 219, 500

User Milosnkb
by
6.1k points

1 Answer

5 votes


173.014

1) Let's find the standard deviation for this data set:


12,53,141,219,500

2) So, let's apply the formula for standard deviation:


\begin{gathered} S\left(X\right)=\sqrt{\frac{\sum_(i=1)^n\left(x_i-\bar{x}\right)^2}{n}} \\ \end{gathered}

3) Let's find the mean and compute the variance:


\bar{x}=\sum_(i=1)^na_i=(12+53+141+219+500)/(5)=(925)/(5)=185

The sum of all entries is divided by the number of data points.

Now, for the variance:


\begin{gathered} \sum_(i=1)^n\left(x_i-\bar{x}\right)^2=(\left(12-185\right)^2+\left(53-185\right)^2+\left(141-185\right)^2+\left(219-185\right)^2+\left(500-185\right)^2)/(5) \\ (149670)/(5)=29934 \end{gathered}

Finally, we can take the square root of that variance to get the standard deviation:


\sigma\left(X\right)=\sqrt{\sum_(i=1)^n\frac{\left(x_i-\bar{x}\right)^2}{n}}=√(29934)=173.014

User Ichibann
by
5.5k points