Quadratic Equations
The general form of a quadratic equation is:

Where a, b, and c are constants.
We can solve the quadratic equation by using the following formula:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
The equation:

Has the coefficients a = 8, b = 7, c = 1. Substituting:
![x=\frac{-7\pm\sqrt[]{7^2-4\cdot8\cdot1}}{2\cdot8}](https://img.qammunity.org/2023/formulas/mathematics/college/za5rgi83hfkg0zew2mwfssbwgaqxj80zdm.png)
Operating:
![\begin{gathered} x=\frac{-7\pm\sqrt[]{49-32}}{16} \\ x=\frac{-7\pm\sqrt[]{17}}{16} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7rsfnsq1ubsbf21rcjq838gjy5lwk2zcyl.png)
There are two real solutions:
![\begin{gathered} x_1=\frac{-7+\sqrt[]{17}}{16} \\ x_2=\frac{-7-\sqrt[]{17}}{16} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kq8g14noqhy1tijd1m4494rlfe6gi25aq9.png)
Calculating:
x1 = -0.18
x2 = -0.70