118k views
4 votes
Solve the system of equations using matrices. Use the Gauss- Jordan elimination method And find a solution set

Solve the system of equations using matrices. Use the Gauss- Jordan elimination method-example-1

1 Answer

3 votes

\begin{gathered} x+y+z=4 \\ x-y-z=0 \\ x-y+z=8 \\ \text{The system using matrix is} \\ \begin{bmatrix}{1} & {1} & {1}, & {4} \\ {1} & {-1} & {-1,} & {0} \\ {1} & {-1} & {1,} & {8}{}{}\end{bmatrix}\rightarrow F2=F2-F1=\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {-2} & {-2,} & {-4} \\ {1} & {-1} & {1,} & {8}{}{}\end{bmatrix} \\ \rightarrow F3=F3-F1=\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {-2} & {-2,} & {-4} \\ {0} & {-2} & {0,} & {4}{}{}\end{bmatrix}\rightarrow F2=-(1)/(2)F2 \\ =\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {1} & {1,} & {2} \\ {0} & {-2} & {0,} & {4}{}{}\end{bmatrix}\rightarrow F3=F3+2F2=\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {1} & {1,} & {2} \\ {0} & {0} & {2,} & {8}{}{}\end{bmatrix}\rightarrow F3=(1)/(2)F3 \\ =\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {1} & {1,} & {2} \\ {0} & {0} & {1,} & {4}{}{}\end{bmatrix}\rightarrow F2=F2-F3=\begin{bmatrix}{1} & {1} & {1}, & {4} \\ {0} & {1} & {0,} & {-2} \\ {0} & {0} & {1,} & {4}{}{}\end{bmatrix} \\ \rightarrow F1=F1-F3=\begin{bmatrix}{1} & {1} & {0}, & {0} \\ {0} & {1} & {0,} & {-2} \\ {0} & {0} & {1,} & {4}{}{}\end{bmatrix}\rightarrow F1=F1-F2 \\ =\begin{bmatrix}{1} & {0} & {0}, & {2} \\ {0} & {1} & {0,} & {-2} \\ {0} & {0} & {1,} & {4}{}{}\end{bmatrix} \\ \text{Therefore, the solution is }x=2,\text{ y=-2 and z=4} \end{gathered}

User Richard Nguyen
by
3.4k points