61.1k views
1 vote
Convert the logarithmic equation log_{b}(x)=y to exponential form b^{y}= x log_{a}(b)=cThe base is AnswerThe exponent is AnswerThe result is Answer

Convert the logarithmic equation log_{b}(x)=y to exponential form b^{y}= x log_{a-example-1

1 Answer

1 vote


\begin{gathered} \text{The base = a} \\ \text{the expoent = c} \\ \text{The result is a}^c\text{ = b} \end{gathered}

Step-by-step explanation:
\begin{gathered} \text{Given:} \\ \log ^{}_ab\text{ = c} \\ To\text{ be converted to expoential form} \end{gathered}

The conversion:


\begin{gathered} \log _b(x)\text{ = y} \\ b^y\text{ = x} \end{gathered}

Applying the principle to the given logarithm equation:


\begin{gathered} In\text{ exponential form, }\log ^{}_ab\text{ = c} \\ \text{becomes:} \\ a^c\text{ = b} \end{gathered}


\begin{gathered} \text{The base = a} \\ \text{the expoent = c} \\ \text{The result is a}^c\text{ = b} \end{gathered}

Convert the logarithmic equation log_{b}(x)=y to exponential form b^{y}= x log_{a-example-1
User Fishtoprecords
by
3.6k points