Step-by-step explanation:
The question involves getting the expected value or the sum in a deal involving dice
First, we will have to get the probabilities
Probability is defined by
![P=\frac{number\text{ of possible outcomes}}{number\text{ of total outcome}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mlm4bh2th0fhtjy9wi8dp6awz3wu64j6ip.png)
If a six is rolled, the probability will be
![P(6)=(1)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vq3edhcwsy34ooxba0q5wv0efo70soua0a.png)
When a 4 or 5 is rolled, the probability will be
![\begin{gathered} P(4\text{ or 5})=(1)/(6)+(1)/(6)=(2)/(6)=(1)/(3) \\ P(4\text{ or 5})=(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q60bkfotcaw27fmmr8dap3ncpne9j7q3ju.png)
When a 1, 2, or 3 is rolled
![\begin{gathered} P(1\text{ or 2 or 3})=(1)/(6)+(1)/(6)+(1)/(6)=(3)/(6)=(1)/(2) \\ P(1\text{ or 2 or 3})=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/63mpe22qnn5p0wvfkz7pnpvkl17pt82xv3.png)
We can now get the expected pay using the relationship
![Expected\text{ pay =x.P\lparen x\rparen}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7mcvlvpxyhrfo2pcqykztzc03qoqazic96.png)
So for rolling a 6, the expected will be
![x.P(x)=\text{ \$}12*(1)/(6)=\text{ \$2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/y2dtpikmaf8kcinioumpfe8m1jtzjkt7tm.png)
When a 4 or 5 is rolled
![x.P(x)=\text{ \$}6*(1)/(3)=\text{ \$2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nh76khm3wtc5e2bbcai1a94il3qz0nj5pk.png)
When 1,2, or 3 are rolled
![x.P(x)=-\text{ \$}5*(1)/(2)=-\text{ \$2.5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ep9z4bqvxll0wty22spzta1p8j4krcrjh8.png)
We can now construct the table as follow