Because populations grow exponentially, the equation for modelling the growth is:
![P(t)=P_0\cdot e^(a\cdot t)\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/daect05igiu1ou82g35uo1i06zz5lfsqj9.png)
Where:
• P(t) is the population after t years,
,
• P_0 is the initial population,
,
• a is the growth factor.
To find the growth factor, we use the consider:
• t = 19 years,
,
• P(t) = 2 P_0 (we know that after t = 19 years the population will be doubled).
Replacing these data in the equation above and solving for a, we get:
![\begin{gathered} 2P_0=P_0\cdot e^{a\cdot19\text{ years}}, \\ (2P_0)/(P_0)=e^{a\cdot19\text{ years}}, \\ 2=e^{a\cdot19\text{ years}}, \\ \ln 2=a\cdot19\text{ years}\cdot\ln e \\ \ln 2=a\cdot19\text{ years}, \\ a=\frac{\ln2}{19\text{ years}}\cong\frac{0.03648}{\text{year}}\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uahfw1u0sdu6qg4tymipsuz0okuy7pv227.png)
The annual percent growth rate r is:
![r=a\cdot100\%=\frac{0.03648}{\text{year}}.100\%=\frac{3.648\%}{\text{year}}\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/vb0gni4kp2xkt4htkqb9kswcea33zss893.png)
Answer
• a = 0.03648/year
,
• r = 3.648%/year