Answer:
a=80, i=70, j=40, k=70, and m=70
Explanation:
(a)Angle a and 100° are on a straight line.
The sum of the measures of angles on a straight line is 180 degrees, therefore:
![a+100\degree=180\degree\implies a=180\degree-100\degree=80\degree](https://img.qammunity.org/2023/formulas/mathematics/college/xiserfnuye2x61dwbbtv8e0fukx831sbrl.png)
(i)Angle i is a base angle of an Isosceles triangle. Since base angles of Isosceles triangles are equal, we have that:
![i=70\degree](https://img.qammunity.org/2023/formulas/mathematics/college/8dw36qirpvqwec0tzg6iqv0uwprz7f3xse.png)
(j)In the triangle:
![\begin{gathered} i+j+70=180\degree\text{ (sum of angles in a triangle)} \\ 70+j+70=180\degree\implies j+140=180\implies j=180-140 \\ j=40\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n9i9e7mccgjx1htnu3op0m8seawijbb5z6.png)
(k)Since lines l3 and l4 are parallel, angles k and 70 degrees are alternate angles. Since alternate angles are equal:
![k=70\degree](https://img.qammunity.org/2023/formulas/mathematics/college/ubhc1wt0hm2qcveusl8yznmsywuahalmxx.png)
(m)the sum of angle on a straight line is 180 degrees.
![\begin{gathered} \implies m+k+j=180 \\ m+70+40=180 \\ m=180-110 \\ m=70 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/49fr7w3onsgqk505u7p3d0ebj8ttuxytzz.png)