Given:
The wavelength of the microwave is
![\begin{gathered} \lambda=9.33\text{ cm} \\ =9.33*10^(-2)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/uwtsshyfhr0f62os722xwnfdmljwv2su1f.png)
The width of the window is,
![\begin{gathered} a=34.55\text{ cm} \\ =34.55*10^(-2)\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/96b3gk1vm4dvflp6o1hrmravjbdektotq0.png)
The distance between the wall from the window is,
![d=5.73\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/3pwrna73lglw98avl6yfdlhzjklo4mvw53.png)
To find:
the distance from the central maximum to the first order minimum
Step-by-step explanation:
For destructive interference,
![sin\theta=n(\lambda)/(a)](https://img.qammunity.org/2023/formulas/physics/college/5nmfkt15mg90shyov449y9zypwjsdqbtpe.png)
Here, for the first order, minima n=1.
![\begin{gathered} sin\theta=(9.33*10^(-2))/(34.55*10^(-2)) \\ \theta=15.67\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pit16s81eo4m3fkx0a2pnkv1gns4dwwr9m.png)
The distance from the central maximum to the first order minimum is
![\begin{gathered} y=dtan\theta \\ =5.73* tan15.67\degree \\ =1.61\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hpt38bb9yrclwma288s5eh0zq4taov5uj5.png)
Hence, the required distance is 1.61 m.