Solution:
Using the diagram:
Step 1: Using similar triangles and simplifying:
![\begin{gathered} (H)/(R)=(H-h)/(r) \\ Making\text{ }h\text{ }subject \\ h=(H)/(R)(R-r) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xeegi182kokstcy8adloxloowdkn9lprig.png)
Step 2: Use the Volume of the smaller cone
![\begin{gathered} V(r)=(1)/(3)\pi r^2h \\ Substituting\text{ }h \\ V(r)=(1)/(3)\pi r^2[(H)/(R)(R-r)] \\ V(r)=(\pi H)/(3R)(Rr^2-r^3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gtkbjqq6r9301068l2tg7x4mryf12uu8ri.png)
Step 3: Differentiating to get maximum value
![\begin{gathered} V^(\prime)(r)=(\pi H)/(3R)r(2R-3r) \\ At\text{ maximum V'\lparen r\rparen=0} \\ r=0\text{ }or\text{ 3r=2R} \\ r=(2R)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/306hzpcpucs77j4deib88zsuvw1fb6el8u.png)
Step 4: Equate radius, r in the height formula from step 1
![\begin{gathered} h=(H)/(R)(R-r) \\ h=(H)/(R)(R-(2R)/(3)) \\ h=(H)/(R)\cdot(R)/(3) \\ h=(H)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zdy75zqwo9pd5z200rll646qymqcr56h1e.png)
Final answer:
the inner cone has a maximum volume when:
![h=(H)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/8hpbw6jzfev90j8pgoyyjxpw5jd78z294q.png)