Explanation
We are required to determine the bearing of X from Z from theh given information.
This is achieved thus:
From the diagrammatic representation, let d km represent the equal distance from Y to X and from Y to Z.
According to angle Z, we have:
![\begin{gathered} \tan\theta=(opposite)/(adjacent) \\ \tan Z=(d)/(d) \\ tanZ=1 \\ Z=\tan^(-1)(1) \\ Z=45\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t07lc5znwmsb564qigvzntmzdkiuvfu4bt.png)
Therefore, the bearing of X from Z is:
![\begin{gathered} Bearing=90\degree+45\degree \\ Bearing=135\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lkxfgujwut85u4qsyw6qvy3o0frbryxlny.png)
Hence, the answer is:
![135\degree](https://img.qammunity.org/2023/formulas/mathematics/college/3vfhgaoxeg6r186ebdeo0cz3id8tadc5h1.png)