To find the solution of the equation (x), follow the steps below.
Step 01: Add 8 to both sides of the equation.
![\begin{gathered} \ln (4x-14)-8+8=-5+8 \\ \ln (4x-14)=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/orltcax8oh8tboatxld1m7jodfryg9c662.png)
Step 02: Use the base for both sides.
![e^(\ln (4x-14))=e^3](https://img.qammunity.org/2023/formulas/mathematics/college/gvsums7zg1lk7x8intteq6k5h4oij08f6o.png)
Step 03: Solve e^ln=1
![\begin{gathered} 1\cdot(4x-14)=e^3 \\ 4x-14=e^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xkmjp90c4bkfe37zter4gvu6cic466025y.png)
Step 04: Add 14 to both sides, then divide the sides by 4.
![\begin{gathered} 4x-14+14=e^3+14 \\ (4x)/(4)=(e^3+14)/(4) \\ x=(e^3+14)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oe6cde7famtkr0u2hsojjhexj4r207xu0f.png)
Done! You found the exact solution.
Step 05: To find the aproximate solution, use the value of e.
![\begin{gathered} x=(20.09+14)/(4) \\ x=8.52 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhyqx8fm9u2udlhnt3ndlayhchit7cgy5u.png)
Answer: x = 8.52.