77.6k views
1 vote
I need help in math can you please help me

I need help in math can you please help me-example-1

1 Answer

2 votes

We have to work with left-hand side and make it same as right-hand side.

Let's do it:


(\sin \theta)/(1-\cos \theta)
(\sin\theta)/(1-\cos\theta)*(1+\cos\theta)/(1+\cos\theta)=\frac{\sin \theta(1+\cos \theta)}{(1-\cos \theta)(1+\cos \theta)_{}}

Now, simplifying further:


\begin{gathered} \frac{\sin\theta(1+\cos\theta)}{(1-\cos\theta)(1+\cos\theta)_{}} \\ =(\sin\theta+\sin\theta\cos\theta)/(1-\cos^2\theta) \end{gathered}

We know the identity:


\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ or \\ \sin ^2\theta=1-\cos ^2\theta \end{gathered}

Substituting, we get:


\begin{gathered} (\sin\theta+\sin\theta\cos\theta)/(1-\cos^2\theta) \\ =(\sin\theta+\sin\theta\cos\theta)/(\sin^2\theta) \\ =(\sin\theta)/(\sin^2\theta)+(\sin\theta\cos\theta)/(\sin^2\theta) \\ =(1)/(\sin\theta)+(\cos\theta)/(\sin\theta) \end{gathered}

We know:


(1)/(\sin\theta)=\csc \theta

and


\begin{gathered} (\sin\theta)/(\cos\theta)=\tan \theta \\ \text{and} \\ (\cos\theta)/(\sin\theta)=(1)/(\tan\theta)=\cot \theta \end{gathered}

Of couse, we can see that it is proved.


\begin{gathered} (1)/(\sin\theta)+(\cos\theta)/(\sin\theta) \\ =\csc \theta+\cot \theta \end{gathered}

User Sbaldrich
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories