Given data:
* The mass of the skier is m = 55 kg.
* The angle of the slope is,
![\theta=25^(\circ)](https://img.qammunity.org/2023/formulas/physics/college/aqlhz2rmldz6vc3rwgo33t637b8l5ceca5.png)
* The initial velocity of the skier at the top is,
![u=3.8\text{ m/s}](https://img.qammunity.org/2023/formulas/physics/college/l7us6rxevvoqxmm4m9rhtpordmauitsfq0.png)
* The coefficient of friction between the ski boot and slope is,
![\mu=0.14](https://img.qammunity.org/2023/formulas/physics/college/fai5syap82apj51gpdrbmpg2549pc391vp.png)
* The distance traveled by the skier along the inclined plane is,
![S=57\text{ m}](https://img.qammunity.org/2023/formulas/physics/college/6oqy0z2ffdflf5gtusvbzn0qpmi6099cnm.png)
Solution:
The diagrammatic representation of the given case is,
The angle of the inclined plane with the vertical axis is,
![\begin{gathered} \alpha=180^(\circ)-90^(\circ)-\theta \\ \alpha=90^(\circ)-\theta \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/v10xbrzv11h87rutnalouyp9rxekc7gsyc.png)
Thus, the component of the weight of skier along the inclined plane is,
![\begin{gathered} F_1=mg\cos (90^(\circ)-\theta)_{} \\ F_1=mg\sin (\theta) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/n4k8ap2v8mvvpxkuuo8flcjplpt5eq3pol.png)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} F_1=55*9.8*\sin (25^(\circ)) \\ F_1=227.79\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gaai9sz09ph8ur7qx1ezdu781ucrygfx1w.png)
The component of weight perpendicular to the inclined plane is,
![\begin{gathered} F_2=mg\sin (90^(\circ)-\theta) \\ F_2=mg\cos (\theta) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/m7dgmxtmdk7hxax2tdsuwm2vartiz4i5ht.png)
Substituting the known values,
![\begin{gathered} F_2=55*9.8*\cos (25^(\circ)) \\ F_2=488.5\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9l0ettoksx0bb26yc0whtmehee8igjsom3.png)
From the diagram, the normal force acting on the skier is,
![\begin{gathered} F_N=F_2 \\ F_N=488.5\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/iebaxheoc9izcdjpo818y9w8w3my39btbm.png)
The frictional force acting on the skier in terms of the normal force is,
![\begin{gathered} F_r=\mu F_N \\ F_r=0.14*488.5 \\ F_r=68.39\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/3wqaau6x83zfyw502og65ls44if96t2qpc.png)
Thus, the net force acting on the skier down the inclined plane is,
![\begin{gathered} F=F_1-F_r_{} \\ F=227.79-68.39 \\ F=159.4\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/tn76jnbvb88lky4vfzbrfe7pqiz5eag45y.png)
According to Newton's second law, the acceleration of the skier is,
![\begin{gathered} F=ma \\ a=(F)/(m) \\ a=(159.4)/(55) \\ a=2.9ms^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dub83a9xupon5fl80lb7hce7mxkthioaos.png)
By the kinematics equation, the speed of the skier after moving to distance S is,
![\begin{gathered} v^2-u^2=2aS \\ v^2-3.8^2=2*2.9*57 \\ v^2-14.44=330.6 \\ v^2=330.6+14.44 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6twl82i6kkvwu1afs7ukik1e2umrngefm6.png)
By simplifying,
![\begin{gathered} v^2=345.04 \\ v=18.6\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/kae8uxnztk7a7a5idvs5yxqthtexds6b4a.png)
Thus, the speed of the skier after moving 57 m downhill is 18.6 meters per second.