135k views
1 vote
Square binomial using Binomial Squares Pattern (simplify) ( x + 6/7)^2

1 Answer

7 votes

We need to simplify the expression:


\mleft(x+(6)/(7)\mright)^2

We can use the following identity:


(a+b)^(2)=a^(2)+2ab+b^(2)

In this problem, we have:


\begin{gathered} a=x \\ \\ b=(6)/(7) \end{gathered}

Thus, we obtain:


\begin{gathered} \mleft(x+(6)/(7)\mright)^2=x^2+2\cdot x\cdot(6)/(7)+\mleft((6)/(7)\mright)^2 \\ \\ \mleft(x+(6)/(7)\mright)^2=x^(2)+(12)/(7)x+(36)/(49) \end{gathered}

Therefore, after simplifying, we obtain:


x^2+(12)/(7)x+(36)/(49)

User Avt
by
4.2k points