88.9k views
4 votes
F(x)=3x^2+6. find the zeros. there is 2 of them

User Pandurang
by
9.1k points

1 Answer

5 votes

\begin{gathered} x=\sqrt[]{2}\cdot i \\ x=-\sqrt[]{2}\cdot i \end{gathered}

Step-by-step explanation

The zero of a function is any replacement for the variable that will produce an answer of zero,so let f(x)=o to find the zeros

Step 1

Let f(x)= 0 and solve for x


\begin{gathered} f(x)=3x^2+6 \\ f(x)=0 \\ \text{Hence} \\ 3x^2+6=0\text{ } \end{gathered}

Step 2

solve for x


\begin{gathered} 3x^2+6=0\text{ } \\ subtract\text{ 6 in both sides} \\ 3x^2+6-6=0-6\text{ } \\ 3x^2=-6 \\ \text{divide boths sides by 3} \\ (3x^2)/(3)=(-6)/(3) \\ x^2=-2 \\ \text{remember i}^2=-1,\text{ }i=\sqrt[]{-1} \\ \text{hence} \\ x=\pm\sqrt[]{-2} \\ x=\pm\sqrt[]{2\cdot-1\text{ }} \\ x=\pm\sqrt[]{2}\cdot\sqrt[]{-1} \\ x=\pm\sqrt[]{2}\cdot i \\ \end{gathered}

so, the answer is


\begin{gathered} x=\sqrt[]{2}\cdot i \\ x=-\sqrt[]{2}\cdot i \end{gathered}

I hope this helps you

User Flgn
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories