143k views
3 votes
4 (02.08 MC)Ler f(x) = 4x+x+ 1 and g(x) = x2- 2. Find a{f(x)). Show each step of your work

4 (02.08 MC)Ler f(x) = 4x+x+ 1 and g(x) = x2- 2. Find a{f(x)). Show each step of your-example-1
User Ragesz
by
5.1k points

1 Answer

1 vote

Given:


f(x)=4x^2+x+1\text{ and }g(x)=x^2-2.

The composition is g(f(x)).


\text{ Substitute }f\mleft(x\mright)=4x^2+x+1\text{ in the g(f(x)), we get}
g(f(x))=g(4x^2+x+1)
Replace\text{ }x=4x^2+x+1\text{ in }g(x)=x^2-2,\text{ we get}


g(f(x))=(4x^2+x+1)^2-2
\text{Use (a+b+c)}^2=a^2+b^2+c^2+2ab+2bc+2ca\text{.}


g(f(x))=(4x^2)^2+x^2+1^2+2(4x)(x)+2(4x)(1)+2(x)(1)-2


g(f(x))=16x^4+x^2+1+8x^2+8x+2x-2

Adding like terms, which terms have the same variable with the same power.


g(f(x))=16x^4+9x^2+10x-1

Hence the answer is


g(f(x))=16x^4+9x^2+10x-1

User Nolawi
by
5.4k points