Let x be the amount invested in the 6% account and y be the amount invested in the 10%. then we can set the following system of equations:
![\begin{gathered} 0.06x+0.10y=470, \\ x+y=7000. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/72zeaacvmbqp78xvobf8zehav5lv6gx1p3.png)
Substracting y from the second equation we get:
![x=7000-y\text{.}](https://img.qammunity.org/2023/formulas/mathematics/college/7n6r54ac22dsqnnaf17x70kise7cepzrgc.png)
Substituting the above equation in the first one we get:
![0.06(7000-y)+0.10y=470.](https://img.qammunity.org/2023/formulas/mathematics/college/4k2wuue0dwd0q2221mi9yk7le4i9zq2nei.png)
Simplifying the above result we get:
![\begin{gathered} 420-0.06y+0.10y=470, \\ 420+0.04y=470. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oyz15v2nwx9pigtbx0ptvpmkxxt0oa4xv9.png)
Subtracting 420 from the above equation we get:
![\begin{gathered} 420+0.04y-420=470-420, \\ 0.04y=50. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y8khm85mh8o2w07r81y51k5zoapk6in2s2.png)
Dividing the above equation by 0.04 we get:
![\begin{gathered} (0.04y)/(0.04)=(50)/(0.04), \\ y=1250. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3prjn834s7f86gi5j07wcdxivffhf21b2a.png)
Finally, substituting y=1250 at x=7000-y we get:
![\begin{gathered} x=7000-1250, \\ =5750. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gotanoosg06e90qn39jy4ckbpht8u3u26j.png)
Answer:
$5750 at 6%.
$1250 at 10%.